Friday 30 October 2015

What is Diode ?

Diode


          


         






A p–n junction is a boundary or interface between two types of semiconductor material, p-type and n-type, inside a single crystal of semiconductor. It is created by doping, for example by ion implantation, diffusion ofdopants, or by epitaxy (growing a layer of crystal doped with one type of dopant on top of a layer of crystal doped with another type of dopant). If two separate pieces of material were used, this would introduce a grain boundary between the semiconductors that would severely inhibit its utility by scattering the electrons andholes
p–n junctions are elementary "building blocks" of most semiconductor electronic devices such as diodes,transistors, solar cells, LEDs, and integrated circuits; they are the active sites where the electronic action of the device takes place. For example, a common type of transistor, the bipolar junction transistor, consists of two p–n junctions in series, in the form n–p–n or p–n–p.
The discovery of the p–n junction is usually attributed to American physicist Russell Ohl of Bell Laboratories.[1] However, Vadim Lashkaryov reported discovery of p-n-junctions in Cu_2O and silver sulphide photocells and selenium rectifiers in 1941.

DIODE

A diode is a specialized electronic component with two electrodes called the anode and thecathode. Most diodes are made with semiconductor materials such as silicon, germanium, or selenium. Some diodes are comprised of metal electrodes in a chamber evacuated or filled with a pure elemental gas at low pressure. Diodes can be used as rectifiers, signal limiters, voltage regulators, switches, signal modulators, signal mixers, signal demodulators, and oscillators.
The fundamental property of a diode is its tendency to conduct electric current in only one direction. When the cathode is negatively charged relative to the anode at a voltage greater than a certain minimum called forward breakover, then current flows through the diode. If the cathode is positive with respect to the anode, is at the same voltage as the anode, or is negative by an amount less than the forward breakover voltage, then the diode does not conduct current. This is a simplistic view, but is true for diodes operating as rectifiers, switches, and limiters. The forward breakover voltage is approximately six tenths of a volt (0.6 V) for silicon devices, 0.3 V for germanium devices, and 1 V for selenium devices.
The above general rule notwithstanding, if the cathode voltage is positive relative to the anode voltage by a great enough amount, the diode will conduct current. The voltage required to produce this phenomenon, known as the avalanche voltage, varies greatly depending on the nature of the semiconductor material from which the device is fabricated. The avalanche voltage can range from a few volts up to several hundred volts.
When an analog signal passes through a diode operating at or near its forward breakover point, the signal waveform is distorted. This nonlinearity allows for modulation, demodulation, and signal mixing. In addition, signals are generated at harmonics, or integral multiples of the input frequency. Some diodes also have a characteristic that is imprecisely termed negative resistance. Diodes of this type, with the application of a voltage at the correct level and the polarity, generate analog signals at microwave radio frequencies.
Semiconductor diodes can be designed to produce direct current (DC) when visible light,infrared transmission (IR), or ultraviolet (UV) energy strikes them. These diodes are known as photovoltaic cells and are the basis for solar electric energy systems and photosensors. Yet another form of diode, commonly used in electronic and computer equipment, emits visible light or IR energy when current passes through it. Such a device is the familiar light-emitting diode (LED).

FORWARD BIAS DIODE

This forward-bias voltage drop exhibited by the diode is due to the action of the depletion region formed by the P-N junction under the influence of an applied voltage. If no voltage applied is across a semiconductor diode, a thin depletion region exists around the region of the P-N junction, preventing current flow.




REVERSE BIAS DIODE


Connecting the p-type region to the negative terminal of the battery and the n-type region to the positive terminal corresponds to reverse bias. If a diode is reverse-biased, the voltageat the cathode is comparatively higher than the anode. Therefore, no current will flow until the diode breaks down.



No comments:

Post a Comment